Recognition of Pathological Voices by Human Factor Cepstral Coefficients (HFCC)

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Exploiting independent filter bandwidth of human factor cepstral coefficients in automatic speech recognition.

Mel frequency cepstral coefficients (MFCC) are the most widely used speech features in automatic speech recognition systems, primarily because the coefficients fit well with the assumptions used in hidden Markov models and because of the superior noise robustness of MFCC over alternative feature sets such as linear prediction-based coefficients. The authors have recently introduced human factor...

متن کامل

On combining information from modulation spectra and mel-frequency cepstral coefficients for automatic detection of pathological voices.

This work presents a novel approach for the automatic detection of pathological voices based on fusing the information extracted by means of mel-frequency cepstral coefficients (MFCC) and features derived from the modulation spectra (MS). The system proposed uses a two-stepped classification scheme. First, the MFCC and MS features were used to feed two different and independent classifiers; and...

متن کامل

Comparison of HMM and DTW methods in automatic recognition of pathological phoneme pronunciation

In the paper recently proposed Human Factor Cepstral Coefficients (HFCC) are used to automatic recognition of pathological phoneme pronunciation in speech of impaired children and efficiency of this approach is compared to application of the standard Mel-Frequency Cepstral Coefficients (MFCC) as a feature vector. Both dynamic time warping (DTW), working on whole words or embedded phoneme patter...

متن کامل

Speech Emotion Recognition Based on Power Normalized Cepstral Coefficients in Noisy Conditions

Automatic recognition of speech emotional states in noisy conditions has become an important research topic in the emotional speech recognition area, in recent years. This paper considers the recognition of emotional states via speech in real environments. For this task, we employ the power normalized cepstral coefficients (PNCC) in a speech emotion recognition system. We investigate its perfor...

متن کامل

Spectral Peak-Weighted Liftering of Cepstral Coefficients for Speech Recognition

In this paper, we propose a peak-weighted cepstral lifter (PWL) for enhancing the spectral peaks of an all-pole model spectrum in the cepstral domain. The design parameter of the PWL is the degree of pole enhancement or pole shifting toward the unit circle. The optimal pole shifting factor is chosen by considering the sensitivity to spectral resonance peaks, the variability of cepstral variance...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Computer Science

سال: 2020

ISSN: 1549-3636

DOI: 10.3844/jcssp.2020.1085.1099